You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
22 KiB
236 lines
22 KiB
2 years ago
|
import numpy as np
|
||
|
def cal_84E3_5( it=256):
|
||
|
''' 84E3 N=5的数据
|
||
|
# Mn = 0.016601815823605707
|
||
|
# Bn = 0.01774319963465376
|
||
|
# Cn =-0.0011413838110480544
|
||
|
# Dn = 0.0005053072823585981
|
||
|
# En = 0.016169833035475138
|
||
|
# Fn = 0.157412431394031
|
||
|
'''
|
||
|
integratedTime = it
|
||
|
int2 = 1088
|
||
|
# Mn = 0.016601815823605707
|
||
|
# Bn = 0.017751576487153618
|
||
|
# Cn = -0.0011497606635479107
|
||
|
# Dn = 0.0009618522119974396
|
||
|
# En = 0.030403547263606567
|
||
|
# Fn = 0.295976853147947
|
||
|
B0 = 0.0170653447303655
|
||
|
B1 = 0.0216913569372244
|
||
|
cal = 0.102722719497288
|
||
|
calaq = 0.0761186332523634
|
||
|
|
||
|
offset = -0.0016466910934066525 # ???????????? 对于单个数据模拟,自行设定
|
||
|
|
||
|
t0 = 8192
|
||
|
Mn = int2/65535
|
||
|
print( f"Mn {Mn}")
|
||
|
Bn = B0 +B1*(integratedTime/t0)
|
||
|
print( f"Bn {Bn}")
|
||
|
Cn = Mn-Bn
|
||
|
print( f"Cn {Cn}")
|
||
|
|
||
|
print( f"=====================")
|
||
|
|
||
|
Dn = Cn - offset
|
||
|
print( f"Dn {Dn}")
|
||
|
# integratedTime : 256 int : 1088
|
||
|
# int : 1088
|
||
|
# Mn : 0.016601815823605707
|
||
|
# Bn : 0.01774319963465376 B0 : 0.0170653447303655 B1 : 0.0216913569372244
|
||
|
# Cn : -0.0011413838110480544
|
||
|
# Dn : 0.0005053072823585981
|
||
|
# En : 0.016169833035475138
|
||
|
# Fn : 0.157412431394031
|
||
|
# cal : 0.102722719497288 calaq : 0.0761186332523634
|
||
|
# offset: -0.0016466910934066525
|
||
|
|
||
|
def cal_85C2_5(it=4096):
|
||
|
''' 85C2 N=5的数据
|
||
|
# Mn = 0.016601815823605707
|
||
|
# Bn = 0.01774319963465376
|
||
|
# Cn =-0.0011413838110480544
|
||
|
# Dn = 0.0005053072823585981
|
||
|
# En = 0.016169833035475138
|
||
|
# Fn = 0.157412431394031
|
||
|
'''
|
||
|
integratedTime = it
|
||
|
int2 = 2378
|
||
|
|
||
|
B0 = 0.0166920032801035
|
||
|
B1 = 0.0167499611810745
|
||
|
cal = 0.63607834406219
|
||
|
calaq = 0.356482954042082
|
||
|
|
||
|
offset = 0.01133794200654005 # ???????????? 对于单个数据模拟,自行设定
|
||
|
|
||
|
t0 = 8192
|
||
|
Mn = int2/65535
|
||
|
print( f"Mn {Mn}")
|
||
|
Bn = B0 +B1*(integratedTime/t0)
|
||
|
print( f"Bn {Bn}")
|
||
|
Cn = Mn-Bn
|
||
|
print( f"Cn {Cn}")
|
||
|
|
||
|
print( f"=====================")
|
||
|
|
||
|
|
||
|
Dn = Cn - offset
|
||
|
print( f"Dn {Dn}")
|
||
|
|
||
|
En = Dn * (t0/integratedTime)
|
||
|
print( f"En {En}")
|
||
|
|
||
|
Fn = En / cal
|
||
|
print( f"Fn {Fn}")
|
||
|
|
||
|
En = Dn * (t0/integratedTime)
|
||
|
print( f"En {En}")
|
||
|
|
||
|
Fn = En / cal
|
||
|
print( f"Fn {Fn}")
|
||
|
|
||
|
# integratedTime : 4096 int : 2378
|
||
|
# int : 2378
|
||
|
# Mn : 0.036285954070344094
|
||
|
# Bn : 0.025066983870640748 B0 : 0.0166920032801035 B1 : 0.0167499611810745
|
||
|
# Cn : 0.011218970199703346
|
||
|
# Dn : -0.0018551094093052709
|
||
|
# En : -0.0037102188186105417
|
||
|
# Fn : -0.005832958869368126
|
||
|
# cal : 0.63607834406219 calaq : 0.356482954042082
|
||
|
# offset: 0.013074079609008617
|
||
|
|
||
|
|
||
|
# integratedTime : 4096 int : 2378
|
||
|
# int : 2378
|
||
|
# Mn : 0.036285954070344094
|
||
|
# Bn : 0.025066983870640748 B0 : 0.0166920032801035 B1 : 0.0167499611810745
|
||
|
# Cn : 0.011218970199703346
|
||
|
# Dn : -0.0018551094093052709
|
||
|
# En : -0.0037102188186105417
|
||
|
# Fn : -0.005832958869368126
|
||
|
# cal : 0.63607834406219 calaq : 0.356482954042082
|
||
|
# offset: 0.013074079609008617
|
||
|
Cn = [0.01136548264861998, 0.01138015828969003, 0.011337766832260052, 0.01132095986993471, 0.011218970199703346, 0.011212162202126834, 0.011212743656722098, 0.011151988662548129, 0.010933601832307842, 0.011005331505569677, 0.011028105794539608, 0.01100822640818333, 0.010942458736238093, 0.010963172937523625, 0.01105108611594769, 0.011068469619908358, 0.011133704581849438, 0.011212241174035721, 0.011180142458198837, 0.011203492803559867, 0.01105498556355372, 0.011156018146416584, 0.011172260957413992, 0.011252514616200197, 0.011184631881623774, 0.011179175376741513, 0.011154698389448443, 0.011188259459975716, 0.0113058141946417, 0.011766123908064537, 0.011983065778083526, 0.012118186131028975, 0.012103543111194152, 0.012206808535695387, 0.012412698706945585, 0.01267450440294153, 0.012934565817318569, 0.013420810141401333, 0.014617112556922069, 0.015681112402875366, 0.015459246146360489, 0.014484963083502875, 0.013971061634349077, 0.013889192370192788, 0.013822779050513073, 0.013821858612938664, 0.013749466267735336, 0.013618145495747046, 0.013514622090138297, 0.013595209744363006, 0.01339102594320006, 0.013465704863281532, 0.013578852754610161, 0.014076774920131749, 0.014479863821888504, 0.014646436770221614, 0.014595150636774828, 0.01449739522068648, 0.014298351202999028, 0.014185271387019725, 0.014331137257262413, 0.014586387092549058, 0.0149178160403254, 0.01519961262547228, 0.015452360719462599, 0.01569393026903297, 0.01599198983541756, 0.016595156840005384, 0.017920827494357396, 0.02192580794608853, 0.029705094379913324, 0.0378997219401567, 0.03931217628107489, 0.03347184076101134, 0.025899871410690486, 0.020846034264568557, 0.018060028753001472, 0.016735463821549754, 0.016128833760202424, 0.01596143632898665, 0.016557984825467352, 0.0180359180059832, 0.02002449891760711, 0.02203689373102117, 0.023191759200585797, 0.023631450967868985, 0.023578668734755007, 0.023749444686067503, 0.02402693225476092, 0.02612542754536587, 0.03460248322327726, 0.04615832832138436, 0.05016460181948686, 0.045179845614753814, 0.038385101852647936, 0.03420313542257224, 0.03195412540167165, 0.029836654425576238, 0.027043993352519034, 0.024076392851739077, 0.02207884436699092, 0.021053649204190752, 0.020703722909446786, 0.020603662165020676, 0.02050721729060613, 0.02029927082063424, 0.02025366518374567, 0.020275971907416847, 0.020223063517608175, 0.019909302894542895, 0.019620513109427536, 0.019540108155173045, 0.019401813294152796, 0.019137155950217, 0.018820194181100626, 0.018286201467718897, 0.01771762383755065, 0.017433911177773202, 0.017463027769593697, 0.01860535544563624, 0.020061787558601378, 0.02065063095222869, 0.019276319955942325, 0.01720745081684192, 0.01567073130752923, 0.01512623787922417, 0.014933349487425626, 0.015107818900273746, 0.015704299696951793, 0.016168580705074966, 0.016779074183468135, 0.017079899876833195, 0.017358576461166345, 0.01721983853265189, 0.01710783361620464, 0.016262878233580816, 0.015121366335600597, 0.014665712797034651, 0.014984515458517172, 0.01549443995036677, 0.015975926499258927, 0.01592196254007956, 0.015737588717781997, 0.015494799249253156, 0.015120159405045346, 0.014640856065219802, 0.014403815476553502, 0.014159667052472819, 0.01393929143255693, 0.013832341362487281, 0.01372502157130557, 0.013372237700339618, 0.013000448910664004, 0.012481343723554247, 0.012220491589085461, 0.01218140942947734, 0.012119907463908848, 0.01213753459740647, 0.012192061167286543, 0.01222637939516185, 0.012134843013937396, 0.012194061137440329, 0.012116468679591909, 0.012057782772325373, 0.011971350765892827, 0.011874273097731064, 0.011872769844183999, 0.011803375406775517, 0.011715706097058458, 0.011658679168142123, 0.011606972567583397, 0.011598725462719665, 0.011660092192419785, 0.011583613980996568, 0.011466271042461701, 0.011374420561411119, 0.011381650890279694, 0.01121878125846721, 0.01098457485320838, 0.011073429835979545, 0.011000943973301161, 0.010976853296968417, 0.010926629495456877, 0.010868096281516713, 0.01092669468295053, 0.010881169617666109, 0.010874199601430212, 0.010903693140351577, 0.010778803
|
||
|
|
||
|
Cn2= [0.01136548264861998, 0.01138015828969003, 0.011337766832260052, 0.01132095986993471, 0.011218970199703346, 0.011212162202126834, 0.011212743656722098, 0.011151988662548129, 0.010933601832307842, 0.011005331505569677, 0.011028105794539608, 0.01100822640818333, 0.010942458736238093, 0.010963172937523625, 0.01105108611594769, 0.011068469619908358, 0.011133704581849438, 0.011212241174035721, 0.011180142458198837, 0.011203492803559867, 0.01105498556355372, 0.011156018146416584, 0.011172260957413992, 0.011252514616200197, 0.011184631881623774, 0.011179175376741513, 0.011154698389448443, 0.011188259459975716, 0.0113058141946417, 0.011766123908064537, 0.011983065778083526, 0.012118186131028975, 0.012103543111194152, 0.012206808535695387, 0.012412698706945585, 0.01267450440294153, 0.012934565817318569, 0.013420810141401333, 0.014617112556922069, 0.015681112402875366, 0.015459246146360489, 0.014484963083502875, 0.013971061634349077, 0.013889192370192788, 0.013822779050513073, 0.013821858612938664, 0.013749466267735336, 0.013618145495747046, 0.013514622090138297, 0.013595209744363006, 0.01339102594320006, 0.013465704863281532, 0.013578852754610161, 0.014076774920131749, 0.014479863821888504, 0.014646436770221614, 0.014595150636774828, 0.01449739522068648, 0.014298351202999028, 0.014185271387019725, 0.014331137257262413, 0.014586387092549058, 0.0149178160403254, 0.01519961262547228, 0.015452360719462599, 0.01569393026903297, 0.01599198983541756, 0.016595156840005384, 0.017920827494357396, 0.02192580794608853, 0.029705094379913324, 0.0378997219401567, 0.03931217628107489, 0.03347184076101134, 0.025899871410690486, 0.020846034264568557, 0.018060028753001472, 0.016735463821549754, 0.016128833760202424, 0.01596143632898665, 0.016557984825467352, 0.0180359180059832, 0.02002449891760711, 0.02203689373102117, 0.023191759200585797, 0.023631450967868985, 0.023578668734755007, 0.023749444686067503, 0.02402693225476092, 0.02612542754536587, 0.03460248322327726, 0.04615832832138436, 0.05016460181948686, 0.045179845614753814, 0.038385101852647936, 0.03420313542257224, 0.03195412540167165, 0.029836654425576238, 0.027043993352519034, 0.024076392851739077, 0.02207884436699092, 0.021053649204190752, 0.020703722909446786, 0.020603662165020676, 0.02050721729060613, 0.02029927082063424, 0.02025366518374567, 0.020275971907416847, 0.020223063517608175, 0.019909302894542895, 0.019620513109427536, 0.019540108155173045, 0.019401813294152796, 0.019137155950217, 0.018820194181100626, 0.018286201467718897, 0.01771762383755065, 0.017433911177773202, 0.017463027769593697, 0.01860535544563624, 0.020061787558601378, 0.02065063095222869, 0.019276319955942325, 0.01720745081684192, 0.01567073130752923, 0.01512623787922417, 0.014933349487425626, 0.015107818900273746, 0.015704299696951793, 0.016168580705074966, 0.016779074183468135, 0.017079899876833195, 0.017358576461166345, 0.01721983853265189, 0.01710783361620464, 0.016262878233580816, 0.015121366335600597, 0.014665712797034651, 0.014984515458517172, 0.01549443995036677, 0.015975926499258927, 0.01592196254007956, 0.015737588717781997, 0.015494799249253156, 0.015120159405045346, 0.014640856065219802, 0.014403815476553502, 0.014159667052472819, 0.01393929143255693, 0.013832341362487281, 0.01372502157130557, 0.013372237700339618, 0.013000448910664004, 0.012481343723554247, 0.012220491589085461, 0.01218140942947734, 0.012119907463908848, 0.01213753459740647, 0.012192061167286543, 0.01222637939516185, 0.012134843013937396, 0.012194061137440329, 0.012116468679591909, 0.012057782772325373, 0.011971350765892827, 0.011874273097731064, 0.011872769844183999, 0.011803375406775517, 0.011715706097058458, 0.011658679168142123, 0.011606972567583397, 0.011598725462719665, 0.011660092192419785, 0.011583613980996568, 0.011466271042461701, 0.011374420561411119, 0.011381650890279694, 0.01121878125846721, 0.01098457485320838, 0.011073429835979545, 0.011000943973301161, 0.010976853296968417, 0.010926629495456877, 0.010868096281516713, 0.01092669468295053, 0.010881169617666109, 0.010874199601430212, 0.010903693140351577, 0.01077880
|
||
|
|
||
|
ii = ['2395', '2382', '2389', '2388', '2378', '2381', '2377', '2382', '2363', '2367', '2374', '2369', '2362', '2369', '2379', '2374', '2380', '2385', '2380', '2385', '2371', '2381', '2378', '2391', '2383', '2387', '2378', '2386', '2390', '2422', '2424', '2438', '2444', '2449', '2462', '2477', '2495', '2534', '2607', '2679', '2658', '2592', '2564', '2560', '2564', '2567', '2548', '2545', '2530', '2542', '2526', '2535', '2541', '2571', '2598', '2609', '2605', '2604', '2591', '2578', '2595', '2610', '2628', '2647', '2669', '2678', '2694', '2742', '2824', '3094', '3599', '4135', '4221', '3845', '3343', '3017', '2830', '2751', '2704', '2697', '2737', '2836', '2959', '3096', '3173', '3204', '3198', '3213', '3235', '3375', '3925', '4676', '4942', '4620', '4167', '3889', '3746', '3608', '3428', '3234', '3096', '3032', '3007', '3012', '2995', '2993', '2984', '2977', '2983', '2963', '2939', '2936', '2922', '2907', '2886', '2851', '2809', '2794', '2796', '2867', '2968', '3008', '2913', '2790', '2688', '2636', '2634', '2643', '2684', '2707', '2758', '2769', '2796', '2784', '2784', '2720', '2643', '2613', '2636', '2664', '2703', '2694', '2683', '2667', '2643', '2612', '2598', '2580', '2562', '2563', '2552', '2525', '2501', '2474', '2456', '2448', '2445', '2453', '2448', '2458', '2446', '2451', '2442', '2439', '2437', '2427', '2431', '2427', '2416', '2411', '2404', '2414', '2422', '2412', '2404', '2399', '2392', '2388', '2366', '2377', '2373', '2371', '2367', '2357', '2368', '2358', '2358', '2369', '2356', '2362', '2359', '2350', '2357', '2356', '2355', '2361', '2350', '2358', '2367', '2370', '2360', '2357', '2371', '2362', '2366', '2371', '2368', '2364', '2373', '2370', '2374', '2371', '2371', '2367', '2375', '2374', '2357', '2372', '2372', '2365', '2364', '2375', '2364', '2381', '2359', '2371', '2371', '2372', '2373', '2389', '2377', '2369', '2382', '2386', '2371', '2385', '2374', '2379', '2392', '2388', '2378', '2389', '2390', '2389', '2390', '2391', '2397', '2420', '2406', '2418', '2417', '2409', '2419', '2396', '2391']
|
||
|
|
||
|
ii2 =[2395, 2382, 2389, 2388, 2378, 2381, 2377, 2382, 2363, 2367, 2374, 2369, 2362, 2369, 2379, 2374, 2380, 2385, 2380, 2385, 2371, 2381, 2378, 2391, 2383, 2387, 2378, 2386, 2390, 2422, 2424, 2438, 2444, 2449, 2462, 2477, 2495, 2534, 2607, 2679, 2658, 2592, 2564, 2560, 2564, 2567, 2548, 2545, 2530, 2542, 2526, 2535, 2541, 2571, 2598, 2609, 2605, 2604, 2591, 2578, 2595, 2610, 2628, 2647, 2669, 2678, 2694, 2742, 2824, 3094, 3599, 4135, 4221, 3845, 3343, 3017, 2830, 2751, 2704, 2697, 2737, 2836, 2959, 3096, 3173, 3204, 3198, 3213, 3235, 3375, 3925, 4676, 4942, 4620, 4167, 3889, 3746, 3608, 3428, 3234, 3096, 3032, 3007, 3012, 2995, 2993, 2984, 2977, 2983, 2963, 2939, 2936, 2922, 2907, 2886, 2851, 2809, 2794, 2796, 2867, 2968, 3008, 2913, 2790, 2688, 2636, 2634, 2643, 2684, 2707, 2758, 2769, 2796, 2784, 2784, 2720, 2643, 2613, 2636, 2664, 2703, 2694, 2683, 2667, 2643, 2612, 2598, 2580, 2562, 2563, 2552, 2525, 2501, 2474, 2456, 2448, 2445, 2453, 2448, 2458, 2446, 2451, 2442, 2439, 2437, 2427, 2431, 2427, 2416, 2411, 2404, 2414, 2422, 2412, 2404, 2399, 2392, 2388, 2366, 2377, 2373, 2371, 2367, 2357, 2368, 2358, 2358, 2369, 2356, 2362, 2359, 2350, 2357, 2356, 2355, 2361, 2350, 2358, 2367, 2370, 2360, 2357, 2371, 2362, 2366, 2371, 2368, 2364, 2373, 2370, 2374, 2371, 2371, 2367, 2375, 2374, 2357, 2372, 2372, 2365, 2364, 2375, 2364, 2381, 2359, 2371, 2371, 2372, 2373, 2389, 2377, 2369, 2382, 2386, 2371, 2385, 2374, 2379, 2392, 2388, 2378, 2389, 2390, 2389, 2390, 2391, 2397, 4468, 2406, 2418, 2417, 2409, 2419, 2396, 2391]
|
||
|
if __name__ == '__main__':
|
||
|
# cal_84E3_5()
|
||
|
# cal_85C2_5()
|
||
|
|
||
|
print( np.array(ii).astype(int) - np.array(ii2) )
|
||
|
|
||
|
# 2420 2048 4468
|
||
|
# 09 58 09 54 09 4a 09 55 09 56 09 55 09 56 09 57 09 5d 09 74 09 66 09 72 09 71 09 69 09 73 09 5c 09 57 09 8a \
|
||
|
|
||
|
|
||
|
# Cn: [0.01136548 0.01138016 0.01133777 0.01132096 0.01121897 0.01121216
|
||
|
# 0.01121274 0.01115199 0.0109336 0.01100533 0.01102811 0.01100823
|
||
|
# 0.01094246 0.01096317 0.01105109 0.01106847 0.0111337 0.01121224
|
||
|
# 0.01118014 0.01120349 0.01105499 0.01115602 0.01117226 0.01125251
|
||
|
# 0.01118463 0.01117918 0.0111547 0.01118826 0.01130581 0.01176612
|
||
|
# 0.01198307 0.01211819 0.01210354 0.01220681 0.0124127 0.0126745
|
||
|
# 0.01293457 0.01342081 0.01461711 0.01568111 0.01545925 0.01448496
|
||
|
# 0.01397106 0.01388919 0.01382278 0.01382186 0.01374947 0.01361815
|
||
|
# 0.01351462 0.01359521 0.01339103 0.0134657 0.01357885 0.01407677
|
||
|
# 0.01447986 0.01464644 0.01459515 0.0144974 0.01429835 0.01418527
|
||
|
# 0.01433114 0.01458639 0.01491782 0.01519961 0.01545236 0.01569393
|
||
|
# 0.01599199 0.01659516 0.01792083 0.02192581 0.02970509 0.03789972
|
||
|
# 0.03931218 0.03347184 0.02589987 0.02084603 0.01806003 0.01673546
|
||
|
# 0.01612883 0.01596144 0.01655798 0.01803592 0.0200245 0.02203689
|
||
|
# 0.02319176 0.02363145 0.02357867 0.02374944 0.02402693 0.02612543
|
||
|
# 0.03460248 0.04615833 0.0501646 0.04517985 0.0383851 0.03420314
|
||
|
# 0.03195413 0.02983665 0.02704399 0.02407639 0.02207884 0.02105365
|
||
|
# 0.02070372 0.02060366 0.02050722 0.02029927 0.02025367 0.02027597
|
||
|
# 0.02022306 0.0199093 0.01962051 0.01954011 0.01940181 0.01913716
|
||
|
# 0.01882019 0.0182862 0.01771762 0.01743391 0.01746303 0.01860536
|
||
|
# 0.02006179 0.02065063 0.01927632 0.01720745 0.01567073 0.01512624
|
||
|
# 0.01493335 0.01510782 0.0157043 0.01616858 0.01677907 0.0170799
|
||
|
# 0.01735858 0.01721984 0.01710783 0.01626288 0.01512137 0.01466571
|
||
|
# 0.01498452 0.01549444 0.01597593 0.01592196 0.01573759 0.0154948
|
||
|
# 0.01512016 0.01464086 0.01440382 0.01415967 0.01393929 0.01383234
|
||
|
# 0.01372502 0.01337224 0.01300045 0.01248134 0.01222049 0.01218141
|
||
|
# 0.01211991 0.01213753 0.01219206 0.01222638 0.01213484 0.01219406
|
||
|
# 0.01211647 0.01205778 0.01197135 0.01187427 0.01187277 0.01180338
|
||
|
# 0.01171571 0.01165868 0.01160697 0.01159873 0.01166009 0.01158361
|
||
|
# 0.01146627 0.01137442 0.01138165 0.01121878 0.01098457 0.01107343
|
||
|
# 0.01100094 0.01097685 0.01092663 0.0108681 0.01092669 0.01088117
|
||
|
# 0.0108742 0.01090369 0.0107788 0.01078931 0.0108207 0.01064771
|
||
|
# 0.01077531 0.01076171 0.01079275 0.01080159 0.01070379 0.01080561
|
||
|
# 0.01091765 0.01092207 0.0108843 0.01083319 0.01089363 0.01089014
|
||
|
# 0.01090409 0.01091857 0.0108872 0.01088886 0.01098067 0.01098823
|
||
|
# 0.01100128 0.01098159 0.01092515 0.01097527 0.01105538 0.01100746
|
||
|
# 0.0109023 0.01097763 0.01097694 0.01095746 0.01095325 0.01100699
|
||
|
# 0.01097819 0.01106925 0.01087823 0.01102275 0.01096469 0.01103087
|
||
|
# 0.01108194 0.01110947 0.01104794 0.01100081 0.0111023 0.01118249
|
||
|
# 0.0110441 0.0111428 0.01108648 0.01112685 0.01125508 0.01119489
|
||
|
# 0.01117578 0.01120662 0.01133347 0.01129162 0.01135006 0.0113474
|
||
|
# 0.01141275 0.01154769 0.01148338 0.01157043 0.01158094 0.01148562
|
||
|
# 0.01149079 0.0111431 0.01008928]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# integratedTime : 256 int : 1088
|
||
|
# int : 1088
|
||
|
# Mn : 0.016601815823605707
|
||
|
# Bn : 0.017751576487153618 B0 : 0.0170653447303655 B1 : 0.0216913569372244
|
||
|
# Cn : -0.0011497606635479107
|
||
|
# Dn : 0.0009618522119974396
|
||
|
# En : 0.030403547263606567
|
||
|
# Fn : 0.295976853147947
|
||
|
# cal : 0.102722719497288 calaq : 0.0761186332523634
|
||
|
# 5 1088 0 0 0.016601816 0.0177432 -0.001141384 0.000505308 0.016169857 0.102722719 0.157412665 0.157412431
|
||
|
|
||
|
# integratedTime = 256
|
||
|
# int2 = 1088
|
||
|
# # Mn = 0.016601815823605707
|
||
|
# # Bn = 0.017751576487153618
|
||
|
# # Cn = -0.0011497606635479107
|
||
|
# # Dn = 0.0009618522119974396
|
||
|
# # En = 0.030403547263606567
|
||
|
# # Fn = 0.295976853147947
|
||
|
# B0 = 0.0170653447303655
|
||
|
# B1 = 0.0216913569372244
|
||
|
|
||
|
# offset = -0.0016466910934066525 # ???????????? 对于单个数据模拟,自行设定
|
||
|
|
||
|
# cal = 0.102722719497288
|
||
|
# calaq = 0.0761186332523634
|
||
|
# t0 = 8192
|
||
|
# Mn = int2/65535
|
||
|
# print( f"Mn {Mn}")
|
||
|
# Bn = B0 +B1*(integratedTime/t0)
|
||
|
# print( f"Bn {Bn}")
|
||
|
# Cn = Mn-Bn
|
||
|
# print( f"Cn {Cn}")
|
||
|
|
||
|
# print( f"=====================")
|
||
|
|
||
|
|
||
|
# Dn = Cn - offset
|
||
|
# print( f"Dn {Dn}")
|
||
|
|
||
|
# En = Dn * (t0/integratedTime)
|
||
|
# print( f"En {En}")
|
||
|
|
||
|
# Fn = En / cal
|
||
|
# print( f"Fn {Fn}")
|